Softwareumgebung: Unterschied zwischen den Versionen

Aus Kicker
Zur Navigation springenZur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 43: Zeile 43:


Die Sequenzdiagramme sind ebenfalls im Microsoft Visual Studio-Format im [https://kicker.ee.hm.edu/svn/branches/ProCK-KI/ SVN] beim Quellcode abgelegt.
Die Sequenzdiagramme sind ebenfalls im Microsoft Visual Studio-Format im [https://kicker.ee.hm.edu/svn/branches/ProCK-KI/ SVN] beim Quellcode abgelegt.

Jedes mal, wenn sich die Ballposition verändert, wird die Funktion <code>ballUpdate()</code> der Klasse <code>KnowledgeBase</code> aufgerufen. Wenn sich eine Spielstangenposition ändert, wird die Funktion <code>axisUpdate(Gamer gamer, Axis axis)</code>, ebenfalls der Klasse <code>KnowledgeBase</code> aufgerufen. Die Parameter <code>gamer</code> und <code>axis</code>, geben an, welche Spielstange sich bewegt hat. Diese Funktionen sind momentan noch leer, können aber später für eine Triggerung und zum Datenabgleich verwendet werden.


=== Konfiguration ===
=== Konfiguration ===

Version vom 5. Dezember 2012, 10:54 Uhr

In Bearbeitung!!!

Um den Kicker zu betreiben, sind drei grundlegende Software-Komponenten nötig. Die SPS (TwinCAT), die Ballerkennung und die Spielsteuerung. Um den Zugriff auf die SPS, für die anderen Programme zu vereinfachen, gibt es die SPSchnittstelle.

TwinCAT

TwinCAT ist eine Software-SPS der Firma Beckhoff Automation. Sie bietet sowohl die Funktionalität einer SPS, sowie einer numerischen Bahnregelung (NC), zur Regelung der Elektromotoren. TwinCAT läuft unter Windows XP und erweitert dieses um eine echtzeitfähige Laufzeitumgebung. Es wird TwinCAT NC PTP (Numerical Control, Point-To-Point) in der Version 2.10.0 verwendet. Als Schnittstelle zur SPS, steht ADS zur Verfügung.

Die Programmierung erfolgte in "Strukturierter Text" und ist im SVN abgelegt. Programmierer war hier Karsten Schätzle, die Umsetzung geschah 2010 als Teil der Diplomarbeit "Entwicklung, Aufbau und Programmierung eines mehrachsigen Antriebskonzeptes mit überlagerten Bewegungen".

Visualisierung von TwinCAT

SPSchnittstelle

Um den Zugriff auf die SPS zu vereinfachen, wurde die SPSchnittstelle programmiert. Sie übersetzt die ADS-Schnittstelle und stellt ein UDP-Server dar, um eine einheitliche Interprozesskommunikation im Projekt zu gewährleisten.

Die Programmierung erfolgte in C/C++ und ist im SVN abgelegt. Programmierer war hier Karsten Schätzle (erste Version, mit TCP-IP), die Umsetzung geschah 2010 als Teil der Diplomarbeit "Entwicklung, Aufbau und Programmierung eines mehrachsigen Antriebskonzeptes mit überlagerten Bewegungen". Die Umstellung auf UDP erfolgte von Scharel Clemens.

Ballerkennung

Die Ballerkennung ermittelt die Ballposition auf dem Spielfeld mit Hilfe von zwei Embedded-Kameras im 10ms-Takt. Die Position des Balls wird mittels einer Visualisierung am Bildschirm dargestellt und für weitere Programme per UDP-Server zur Verfügung gestellt.

Die Programmierung erfolgte in C/C++ und ist im SVN abgelegt. Programmierer war hier Manuel Zimmermann (erste Version, mit Shared Memory), die Umsetzung geschah 2009 als Teil der Diplomarbeit "Computergestützte visuelle Positionsbestimmung durch Triangulation in zwei Dimensionen". Die Umstellung auf UDP erfolgte von Manuel Zimmermann und Scharel Clemens.

Visualisierung der Ballerkennung

Spielsteuerung

Die Spielsteuerung, ist das Programm, welches die Spielzüge bestimmt. Sie berechnet, mit Hilfe der Ball- und Spielstangenpositionen, welche Bewegungen als nächstes auszuführen sind. Sie stellt also die künstliche Intelligenz dar.

Die Programmierung erfolgte in C++ und ist im SVN abgelegt. Programmierer war hier Scharel Clemens, die Umsetzung geschah 2012 als Teil der Diplomarbeit "Konzeption einer Softwareumgebung zur intelligenten Ansteuerung eines automatisierten Tischkickers".

Visualisierung der Spielsteuerung
(wurde mittlerweile in ein eigenes Programm ausgelagert)

Dokumentation

Der Quellcode ist recht ausführlich kommentiert und fast vollständig mit Doxygen-Kommentaren versehen. Aus dem Quellcode lässt sich mit Hilfe von Doxygen eine vollständige Dokumentation der Klassen und Prozeduren extrahieren. Das entsprechende Doxyfile liegt im gleichen Ordner wie der Quellcode. Die Ausgabe erfolgt in drei Formaten: html, latex/pdf und rtf.

Programmablauf

Aus der Dokumentation und des Quellcodes alleine, ist der Programmablauf nur schwer ersichtlich. Deshalb wird dieser hier, mit Hilfe von Sequenzdiagrammen beschrieben. Der allgemeine Programmablauf, ist diesem Sequenzdiagramm zu entnehmen. Es erläutert, welche Klasse wann erzeugt und welche Memberfunktionen wann aufgerufen werden. Die eigentliche Funktionalität (Fahrbefehle für die Spielstangen) befindet sich in der Funktion runAgent(), der Klasse AxisAgent. Es gibt vier Instanzen dieser Klasse, und somit 4 Threads, in denen die Funktion runAgent() parallel ausgeführt wird. Jede Instanz ist für eine Spielstange zuständig.

Die Sequenzdiagramme sind ebenfalls im Microsoft Visual Studio-Format im SVN beim Quellcode abgelegt.

Jedes mal, wenn sich die Ballposition verändert, wird die Funktion ballUpdate() der Klasse KnowledgeBase aufgerufen. Wenn sich eine Spielstangenposition ändert, wird die Funktion axisUpdate(Gamer gamer, Axis axis), ebenfalls der Klasse KnowledgeBase aufgerufen. Die Parameter gamer und axis, geben an, welche Spielstange sich bewegt hat. Diese Funktionen sind momentan noch leer, können aber später für eine Triggerung und zum Datenabgleich verwendet werden.

Konfiguration

Um konstante Daten nicht fest im Quellcode einprogrammieren zu müssen, gibt es zwei Konfigurationsdateien.

Als Dateiformat wird XML gewählt. Die erste Datei heißt config.xml und ist im relativen Ordner (gegenüber dem Ausführungsverzeichnis) config/ abgelegt. Das Attribut file vom Element startup gibt den Dateinamen der zweiten Datei an. Diese liegt im gleichen Ordner wie die erste Datei und beinhaltet die eigentliche Konfiguration.

Das Zwei-Dateien-System erlaubt es verschiedene Profile, für verschiedene Laufzeitumgebungen (z.B.: verschiedene Server-Adressen der Ballerkennung/SPSchnittstelle) anzulegen. Die file-Elemente innerhalb profiles, geben an, welche weiteren Dateien/Profile zur Verfügung stehen.

Die Daten werden von der Klasse Config verwaltet. Als Interpreter für die Dateien, wird TinyXML verwendet.

Aufbau von config/config.xml

<?xml version="1.0" encoding="utf-8" ?>
<config>
    <!-- Konfiguration die beim Programmstart geladen werden soll -->
    <startup file="default.xml" />
    
    <!-- Alle verfügbaren Konfigurationsdateien -->
    <profiles>
        <file name="default.xml" />
        <file name="localhost.xml" />
        <file name="localhost_kickerAndBallAtProck-Kicker.xml" />
    </profiles>
</config>

Aufbau von config/[DATEINAME].xml

Der Aufbau der zweiten Konfigurationsdatei, ist hier erläutert.

Exception Beschreibungen

In der Spielsteuerung sind, zur Fehlerbehandlung während der Laufzeit, Exceptions implementiert. Aktuell, können Exceptions geworfen werden, es gibt jedoch noch keine sinnvolle Behandlung. Es wird lediglich eine Nachricht in der Konsole ausgegeben. Die Exceptions beinhalten einen Fehler-Code, für den in der Datei config/exception.xml die Beschreibungen hinterlegt sind.

<?xml version="1.0" encoding="utf-8" ?>
<exceptons>
  <ex_000 desc="Es liegt kein Fehler vor!" />
  <ex_001 desc="Es ist ein unbekannter Fehler aufgetreten!" />
  <ex_002 desc="Es liegt ein Problem mit einer Datei vor!" />
  <ex_003 desc="Es liegt ein Problem mit einer Configuration vor!" />
  <ex_004 desc="Es liegt ein Problem mit einem Mutex vor!" />
  <ex_004 desc="Timeout beim Warten auf ein Mutex!" />
  <ex_006 desc="Es konnte eine Host-Adresse nicht aufgelöst werden!" />
  <ex_007 desc="Es liegt ein Problem mit einem Thread vor!" />

  <ex_100 desc="Es liegt ein allgemeines Problem mit der Ballerkennung vor!" />

  <ex_200 desc="Es liegt ein allgemeines Problem mit dem SPServer vor!" />
  <ex_201 desc="Es scheint eine Spielstange hängen geblieben zu sein!" />

  <ex_300 desc="Es liegt ein allgemeines Problem mir der Wissensbasis vor!" />
  <ex_301 desc="Es liegt ein Problem mit einem System-Zustand vor!" />
</exceptons>

Interprozesskommunikation

Der Begriff "Interprozesskommunikation" wird nachgehend mit "IPC" abgekürzt.

Einleitung

Für jede Teilaufgabe gibt es beim Kicker ein eigenständiges Programm.

Beispiel der IPC zwischen Ballerkennung und Spielsteuerung

Dieses Sequenzdiagramm beschreibt den sequentiellen Ablauf der IPC zwischen Spielsteuerung und Ballerkennung, innerhalb der Spielsteuerung.